Puzzle Zeitvertreib Beste 4K Filme Beste Multimedia-Lernspiele % SALE %

Data-Driven Prediction for Industrial Processes and Their Applications


Data-Driven Prediction for Industrial Processes and Their Applications
143.00 CHF
Versandkostenfrei

Lieferzeit: 7-14 Werktage

  • 10474711


Beschreibung

Preface Ch1 Introduction 1.1 Why the prediction is required for industrial process 1.2 Introduction to industrial process prediction 1.3 Category of industrial process prediction 1.4 Common-used techniques for industrial process prediction 1.5 Brief summary Ch2 Data preprocessing techniques 2.1 Anomaly detection of data 2.2 Correction of abnormal data 2.3 Methods of packing missing data 2.4 Data de-noising techniques 2.5 Data fusion methods 2.6 Discussion Ch3 Industrial time series prediction 3.1 Introduction 3.2 Methods of phase space reconstruction 3.3 Prediction modeling 3.4 Benchmark prediction problems 3.5 Cases of industrial applications 3.6 Discussion Ch4 Factor-based industrial process prediction 4.1 Introduction 4.2 Methods of determining factors 4.3 Factor-based single-output model 4.4 Factor-based multi-output model 4.5 Cases of industrial applications 4.6 Discussion Ch5 Industrial Prediction intervals with data uncertainty 5.1 Introduction 5.2 Common-used techniques for prediction intervals 5.3 Prediction intervals with noisy outputs 5.4 Prediction intervals with noisy inputs and outputs 5.5 Time series prediction intervals with missing input 5.6 Industrial cases of prediction intervals 5.7 Discussion Ch6 Granular computing-based long term prediction intervals 6.1 Introduction 6.2 Basic theory of granular computing 6.3 Techniques of granularity partition 6.4 Long-term prediction model 6.5 Granular-based prediction intervals 6.6 Multi-dimension granular-based long term prediction intervals 6.7 DiscussionCh7 Parameters estimation and optimization 7.1 Introduction 7.2 Gradient-based methods 7.3 Evolutionary algorithms 7.4 Nonlinear Kalman-filter estimation 7.5 Probabilistic methods 7.6 Gamma-test based noise estimation 7.7 Industrial applications 7.8 Discussion Ch8 Parallel computing considerations 8.1 Introduction 8.2 CUDA-based parallel acceleration 8.3 Hadoop-based distributed computation 8.4 Other techniques 8.5 Industrial applications to parallel computing 8.6 Discussion Ch9 Prediction-based scheduling of industrial system 9.1 Introduction 9.2 Scheduling of blast furnace gas system 9.3 Scheduling of coke oven gas system 9.4 Scheduling of converter gas system 9.5 Scheduling of oxygen system 9.6 Predictive scheduling for plant-wide energy system 9.7 Discussion

Eigenschaften

Breite: 157
Gewicht: 842 g
Höhe: 241
Länge: 32
Seiten: 443
Sprachen: Englisch
Autor: Chunyang Sheng, Jun Zhao, Wei Wang

Bewertung

Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Ich habe die Datenschutzbestimmungen zur Kenntnis genommen.

Zuletzt angesehen

eUniverse.ch - zur Startseite wechseln © 2021 Nova Online Media Retailing GmbH