Puzzle Zeitvertreib Beste 4K Filme Beste Multimedia-Lernspiele % SALE %

Handbook of Gas Sensor Materials. Vol.1: Properties, Advantages and Shortcomings for Applications. C


Handbook of Gas Sensor Materials. Vol.1: Properties, Advantages and Shortcomings for Applications. C
189.18 CHF
Versandkostenfrei

Lieferzeit: 7-14 Werktage

  • 10367481


Beschreibung

Vol. 1. Conventional ApproachesPrefaceChapter 1: Introduction1. Gas sensors and their role in industry, agriculture, medicine and environment control 2. Gas sensors classification3. Requirements to gas sensors4. Comparative analysis of gas sensors5. Materials acceptable for gas sensor applicationsReferencesPart 1. Conventional Gas Sensing MaterialsChapter 2: Metal oxides1. General view2. Which metal oxides are better for solid state electrochemical gas sensors?3. Metal oxides with ionic conductivity: Solid electrolytes3.1. Criterions for metal oxides application in solid electrolyte-based gas sensors3.2. High temperature oxygen sensors3.3. Solid electrolyte-based hydrogen sensors3.4. Other gases3.5. Limitations of solid electrolytes application in gas sensors4. Semiconducting metal oxides4.1. Metal oxides for chemiresistors4.1.1. Binary metal oxides4.1.2. Complex and mixed metal oxides4.1.3. Metal oxide comparison and selection4.2. Metal oxide p-n homojunction and heterostructures4.3. High temperature oxygen sensors based on semiconducting metal oxides5. Metal oxides for room temperature gas sensors6. Other applications of metal oxides6.1. Pyroelectric-based gas sensors6.2. Thermoelectric-based sensors6.3. Chemochromic materials for hydrogen sensorsReferencesChapter 3: Polymers1. General view2. Polymer-based gas sensors3. Mechanisms of conductivity change in polymer-based gas sensors 4. Ion conducting polymers and their using in electrochemical sensors3. Limitations of polymer using in gas sensors4. Choosing a polymer for gas sensor applicationsReferencesChapter 4: Thin metal films1. Thin metal films in gas sensors2. Disadvantages of sensors and approaches to sensor's parameters improvement ReferencesChapter 5: Semiconductors in gas sensors1. Silicon-based gas sensors2. III-V-based gas sensors3. Wide-band-gap semiconductors4. Porous semiconductors (porous silicon)5. Other semiconductor materials5.1. Thermoelectric materials5.2. II-VI semiconductor compounds5.3. Semiconductor glasses5.3.1. Chalcogenide glasses5.3.2. Other glasses5.4. TelluriumReferencesChapter 6: Solid electrolytes for detecting specific gases1. General view on electrochemical gas sensors2. Ideal solid electrolytes 3. H2 sensors4. CO2 sensors5. NOx sensors6. SOx sensors7. Cross sensitivity of solid electrolyte-based gas sensors and limitations8. Oxygen and other sensors based on fluoride ion conductorsReferencesPart 2: Auxiliary MaterialsChapter 7: Materials for sensor platforms and packaging1. Conventional platforms2. Micromachining hotplates3. Flexible platforms4. Cantilever-based platforms4.1. Silicon-based microcantilevers4.2. Polymer-based microcantilevers5. Paper-based gas sensors6. Material requirements for packaging of gas sensorsReferencesChapter 8: Materials for thick film technologyReferencesChapter 9: Electrodes and heaters in MOX-based gas sensors1. Materials for electrodes in conductometric gas sensors1.1. Electrode influence on gas sensor response1.2. Electrode materials preferable for gas sensor applications2. Electrodes for solid electrolyte-based gas sensors2.1. The role of electrode configuration in solid electrolyte-based gas sensors2.2. Sensing electrodes in solid electrolyte-based gas sensors3. Materials for heater fabricationReferencesChapter 10: Surface modifiers for metal oxides in conductometric gas sensors 1. General consideration2. Sensitization mechanisms 3. Bimetallic catalysts4. Approaches to noble metal cluster formingReferencesChapter 11: Catalysts used in calorimetric (combustion-type) gas sensorsReferencesChapter 12: Filters in gas sensors1. Passive filters2. Catalytically active filters3. Sorbents for gas preconcentratorsReferencesPart 3: Materials for specific gas sensorsChapter 13: Materials for piezoelectric-based gas sensors1. Piezoelectric materials2. SAW devices2.1. Materials for interdigital transducers 3. High temperature devices4. Miniaturization of piezoelectric sensors5. Sensing layers5.1. General requirements5.2. Features of sensing materials used in acoustic wave gas sensorsReferencesChapter 14: Materials for optical, fiber optic and integrated optical sensors1. General view on optical gas sensing2. Fibers for optical gas sensors3. Planar waveguide and integrated optical sensors4. Light sources for optical gas sensors5. Detectors for optical gas sensors6. Other elements of optical gas sensorsReferencesChapter 15: Materials for electrochemical gas sensor with liquid and polymer electrolytes1. Membranes2. Electrolytes3. Electrodes4. Gas diffusion electrodesReferencesChapter 16: Materials for capacitance-based gas sensors1. General discussions2. Polymer based capacitance gas sensors3. Other materials ReferencesChapter 17: Sensing layers in work function type gas sensors1. Work function type gas sensors2. Materials tested by KP2.1. Metallic layers 2.2. Inorganic layers 2.3. Organic layers ReferencesChapter 18: Humidity-Sensitive Materials1. Humidity sensors2. Materials acceptable for application in humidity sensors2.1. Polymers2.2. Metal oxide ceramics2.3. Porous semiconductors (silicon and other)2.4. Other materials and approachesReferencesChapter 19: Materials for field ionization gas sensorsReferencesChapter 20: Gas sensors based on thin film transistors1. Thin film transistors2. Gas sensing characteristics of organic thin film transistors3. Metal oxide-based thin film transistors4. Other materials in thin film transistor-based gas sensorsReferencesVol. 2. New Trends in Materials and TechnologiesTable of contentsPrefacePart 1:Nanostructured Gas Sensing MaterialsChapter 1: Carbon-based nanostructures1. Carbon black2. Fullerenes 3. Carbon nanotubes4. Graphene5. Nanodiamond particlesReferencesChapter 2: Nanofibers1. Approaches to nanofibers preparing2. Nanofiber-based gas sensorsReferencesChapter 3: Metal oxide-based nanostructures1. Metal oxide one-dimensional nanomaterials1.1. 1-D structures in gas sensors1.2. The role of 1-D structures in understanding of gas sensing effect1.3. What kind of 1-D structures is better for gas sensor design?2. Mesoporous, macroporous and hierarchical metal oxide structures ReferencesChapter 4: Metal-based nanostructures1. Metal nanoparticles1.1. Properties 1.2. Synthesis1.3. Gas sensor applications2. Metal nanowires ReferencesChapter 5: Semiconductor nanostructures1. Quantum dots1.1. General consideration1.2. Gas sensor applications of quantum dots2. Semiconductor nanowires2.1. Synthesis of semiconductor nanowires2.1. Gas sensing properties of Si nanowiresReferencesPart 2: Other trends in design of gas sensor materialsChapter 6: Photonic crystals1. Photonic crystals in gas sensors2. Problems in the sensing application of PhCs2.1. Problems on the fabrication of photonic crystal2.2. Problems on the coupling losses2.3. Problems on the signal detectionReferencesChapter 7: Ionic liquids in gas sensorsReferencesChapter 8: Silicate-based mesoporous materials1. Mesoporous silicas1.1. Gas sensor applications of mesoporous silicas2. Aluminosilicates (zeolites)2.1. Zeolites-based gas sensorsReferencesChapter 9: Cavitands1. Cavitands: Characterization 2. Cavitands as a material for gas sensorsReferencesChapter 10: Metallo-complexes1. Gas sensor applications of metallo-complexes2. Approaches to improvement of gas sensor parameters and limitationsReferencesChapter 11: Metal-organic frameworks1. General consideration2. MOFs synthesis3. Gas sensor applications ReferencesPart 3: NanocompositesChapter 12: Nanocomposites in gas sensors: Promising approach to gas sensor optimizationReferencesChapter 13: Polymer based nanocomposites1. Conductometric gas sensors based on polymer composites2. Problems related to application of polymer-based composites in gas sensorsReferencesChapter 14: Metal oxide-based nanocomposites for conductometric gas sensors1 Metal-metal oxide composites2. Metal oxide-metal oxide compositesReferencesChapter 15: Composites for optical sensors1. Dye-based composites1.1. Sol-gel composites1.2. Polymer-based composites2. Metal oxide-based nanocompositesReferencesChapter 16: Nanocomposites in electrochemical sensors1. Solid electrolyte-based electrochemical sensors2. Electrochemical sensors with liquid electrolyte2.1. Polymer-modified electrodes2.2. Carbon-ceramic electrodesReferencesChapter 17: Disadvantages of nanocomposites for application in gas sensorsReferencesPart 4: Stability of Gas Sensing Materials and Related ProcessesChapter 18: The role of temporal and thermal stability in sensing material selectionReferencesChapter 19: Factors controlling stability of polymers acceptable for gas sensor application1. Polymer degradation1.1. Thermal degradation1.2. Oxidative degradation1.2.1. Photochemical oxidation1.2.2. Thermal oxidation1.3. Hydrolytic degradation1.4. Conducting polymers dedoping2. Approaches to polymer stabilizationReferencesChapter 20: Instability of metal oxide parameters and approaches to their stabilization1. The role of structural transformation of metal oxides in instability of gas sensing characteristics 2. The role of phase transformations in gas sensor instability3. Approaches to improvement of metal oxide structure stabilityReferencesChapter 21: Instability of 1-D nanostructures1. Stability of metal and semiconductor 1-D nanowires and nanotubes 2. Stability of carbon-based nanotubes and nanofibersReferencesChapter 20: Temporal stability of porous silicon1. Porous silicon aging2. Temporal stabilization of porous silicon through oxidationReferencesPart 5: Structure and Surface Modification of Gas Sensing MaterialsChapter 23: Bulk doping of metal oxides1. General approach2. Bulk doping influence on response and stability of gas sensing characteristics ReferencesChapter 24: Bulk and structure modification of polymers1. Modifiers of polymer structure1.1. Solvents (porogens)1.2. Cross-linkers1.3. Initiators1.4. Plasticizers2. Approaches to functionalizing of polymer surface2.1. Polymer doping2.2. Polymer grafting2.3. The role of polymer functionalization in gas sensing effectReferencesChapter 25: Surface functionalizing of carbon-based gas sensing materials1. Surface functionalizing of carbon nanotubes and other carbon-based nanomaterials2. The role of defects in graphene functionalizing ReferencesChapter 26: Structure and surface modification of porous silicon1. Structure and morphology control of porous silicon2. Surface modification of porous semiconductors to improve gas-sensing characteristicsReferencesPart 6: Technology and Sensing Material SelectionChapter 27: Technological limitations in sensing material applicationsReferencesChapter 28: Technologies suitable for gas sensor fabrication1. Ceramic technology2. Planar sensors 3. Thick film technology3.1. General description3.2. Powder technology3.2.1. Sol-gel process3.2.2. Gas-phase synthesis3.3. Advantages and disadvantages of thick film technology4. Thin film technology5. Polymer technology5.1. Methods of polymer synthesis5.2. Fabrication of polymer films 6. Deposition on fibers6.1. Specifics of film deposition on fibers6.2. Coating design and toolingReferencesChapter 29: Outlooks: Sensing material selection guideReferencesAcknowledges

Eigenschaften

Breite: 186
Gewicht: 1010 g
Höhe: 257
Länge: 29
Seiten: 442
Sprachen: Englisch
Autor: Ghenadii Korotcenkov

Bewertung

Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Ich habe die Datenschutzbestimmungen zur Kenntnis genommen.

Zuletzt angesehen

eUniverse.ch - zur Startseite wechseln © 2021 Nova Online Media Retailing GmbH