Puzzle Zeitvertreib Beste 4K Filme Beste Multimedia-Lernspiele % SALE %

Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications


Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications
157.15 CHF
Versandkostenfrei

Lieferzeit: 7-14 Werktage

  • 10464793


Beschreibung

Chapter 1 - Research and Development History of Three Dimensional (3D) Integration Technology
1.1 Introduction
1.1.1 The International Technology Roadmap for Semiconductors
1.1.2 Three-dimensional Integration Technology
1.2 Motivation for 3D Integration Technology y
1.3 Research and Development History of 3D Integration Technology R&D History of 3D Packaging Technology
1.3.1 3D Packaging Technology
1.3.2 Origin of the TSV Concept
1.3.3 Research and Development History of 3D Technology in Organizations
1.3.3.1 Japan
1.3.3.2 Japanese 3D Integration Technology Research and Development Project (Dream Chip)
1.3.3.3 USA
1.3.3.4 Europe
1.3.3.5 Asia
1.3.3.6 International
1.4 Research and Development History of 3D Integration Technology for Applications
1.4.1 CMOS Image Sensor and MEMS
1.4.2 DRAM
1.4.3 2.5D with Interposer
1.4.4 Others

Chapter 2- Recent Research and Development Activities of Three Dimensional (3D) Integration Technology
2.1 Recent Announcement of Research and Development Activities
2.2 Dynamic Random-Access Memory (DRAM)
2.2.1 Through-Silicon Via (TSV) Technology for DRAM
2.2.2 Wide I/O and Wide I/O2 Mobile DRAM
2.3 Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM) DRAM
2.3.1 Hybrid Memory Cube (HMC)High Bandwidth Memory (HBM) DRAM
2.3.2 High Bandwidth Memory (HBM) DRAM
2.4 FPGA and 2.5D
2.5 Others
2.6 New Energy and Industrial Technology Development Organization (NEDO) Japan
2.6.1 Next Generation "Smart Device" Project
2.6.2 Background, Purpose and Target of "Smart Device" Project

Chapter 3- TSV Processes
3.1 Deep Silicon Etching by Bosch process
3.1.1 Introduction
3.1.2 Basic characteristics of the Bosch process
3.1.3 Bosch Etching Equipment for TSV
3.1.4 Conclusions
3.2 High Rate Silicon-Via Etching and Basics of Sidewall Etch Reaction by Steady-State Etch Process
3.2.1 Introduction
3.2.2 MERIE Process for TSV Application
3.2.2.1 Effect of RF Frequency
3.2.2.2 Effect of Pressure
3.2.2.3 Effect of Oxygen Addition
3.2.3 Investigation of Sidewall Etch Reaction Induced by SF6/O2 Plasma
3.2.3.1 Effect of Oxygen Addition
3.2.3.2 Effect of Temperature
3.2.3.3 Effect of SiF4 Addition
3.2.4 Conclusion
3.3 Low Temperature CVD Technology
3.3.1 Introduction
3.3.2 Cathode-Coupled PECVD (LS-CVD)
3.3.3 Low Temperature SiO2 Deposition
3.3.3.1 Wafer Temperature During Low Temperature Deposition
3.3.3.2 Step Coverage in Si Via Holes
3.3.3.3 Electrical Characteristics of SiO2 Film Deposited at Low Temperature
3.3.3.4 Stress Control of SiO2 Film Deposited Using LS-CVD
3.3.4 Conclusion
3.4 Electrodeposition for Via-Filling
3.4.1 Cu+ Ion as an Accelerant Additive of Copper Electrodeposition
3.4.2 Relation between via Filling and Cu+ Ion by Periodical Reverse Current Waveform
3.4.3 Simulation of Cu+ Ion Distribution inside the Via
3.4.4 High Speed via Filling Electrodeposition by Other Organizations
3.4.5 Reduction of Thermal Expansion Coefficient of Electrodeposited Copper for TSV by Additive

Chapter 4 - Wafer Handling and Thinning Processes
4.1 Wafer Thinning Solution for TSV Devices
4.1.1 Introduction
4.1.2 General Thinning
4.1.3 Wafer Thinning for TSV devices
4.1.4 TTV control
4.1.5 Summary
4.2 A Novel Via Middle TSV Thinning Technology by Si/Cu Grinding and CMP
4.2.1 Introduction
4.2.2 Methods
4.2.3 Results and Discussion
4.2.3.1 Si/Cu Same Rate CMP (1st CMP)
4.2.3.2 TSV Protrusion CMP (2nd CMP)
4.2.3.3 Post CMP Cleaning after 2nd CMP
4.2.4 Conclusion
4.3 Temporally Bonding
4.3.1 Background
4.3.2 The 3MTM Temporary Bonding Materials
4.3.3 The 3MTM Temporary Adhesive
4.3.4 Laser Absorbing Layer
4.3.5 The Next Steps
4.4 Temporary Bonding and Debonding for Through-Silicon Via (TSV) Processing
4.4.1 Introduction
4.4.2 Temporary Bonding and Debonding Process
4.4.3 Debonding Method
4.4.4 Functions and Performance Requirements for Temporary Bonding Device
4.4.5 Ability and Performance Requirements for Debonding Devices
4.4.6 Tokyo Electr

Eigenschaften

Breite: 171
Gewicht: 652 g
Höhe: 237
Länge: 24
Seiten: 408
Sprachen: Englisch
Autor: Kazuo Kondo, Kenji Takahashi, Morihiro Kada

Bewertung

Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Ich habe die Datenschutzbestimmungen zur Kenntnis genommen.

Zuletzt angesehen

eUniverse.ch - zur Startseite wechseln © 2021 Nova Online Media Retailing GmbH