Puzzle Zeitvertreib Beste 4K Filme Beste Multimedia-Lernspiele % SALE %

Laser and Coherence Spectroscopy


Laser and Coherence Spectroscopy
132.63 CHF
Versandkostenfrei

Lieferzeit: 21 Werktage

  • 10368908


Beschreibung

1 Double-Resonance Spectroscopy.- 1.1. Introduction to Double-Resonance Methods.- 1.1.1. Introduction.- 1.1.2. Dynamics of the Interaction of Radiation and Matter.- 1.1.3. Summary of Molecular Spectroscopy.- 1.1.3.1. Rotational Energy Levels.- 1.1.3.2. Vibrational Energy Levels.- 1.1.3.3. Electronic Energy Levels.- 1.1.4. Definition of Double-Resonance Spectroscopy.- 1.1.5. Historical Survey.- 1.2. Response of a System to Pumping and Analyzing Radiation Fields.- 1.2.1. Saturation of Molecular Absorption Lines.- 1.2.2. Double Resonance in a Three-Level System.- 1.2.3. Rate-Equation Analysis of Double Resonance.- 1.3. Experimental Considerations.- 1.3.1. Radiation Sources.- 1.3.1.1. Klystrons.- 1.3.1.2. Fixed-Frequency Lasers.- 1.3.1.3. Tunable Lasers.- 1.3.2. Signal Detection and Enhancement.- 1.3.2.1. Detectors.- 1.3.2.2. Lock-In Amplifier.- 1.3.2.3. Boxcar Averager.- 1.3.2.4. Transient Recorder.- 1.3.3. Detection by Fluorescence versus Absorption Techniques.- 1.3.4. Experimental Configurations.- 1.4. Microwave-Detected Double Resonance.- 1.4.1. Microwave Pumping.- 1.4.1.1. Carbon Oxysulfide.- 1.4.1.2. Ammonia.- 1.4.1.3. Formaldehyde.- 1.4.1.4. Ethylene Oxide.- 1.4.1.5. Hydrogen Cyanide.- 1.4.1.6. Other Systems.- 1.4.2. Infrared Pumping.- 1.4.2.1. Methyl Halides.- 1.4.2.2. Ammonia.- 1.4.3. Optical Pumping.- 1.5 Infrared-Detected Double Resonance.- 1.5.1. Microwave Pumping.- 1.5.2. Infrared Pumping.- 1.5.2.1. Vibrational Energy Transfer.- 1.5.2.2. Rotational Energy Transfer.- 1.5.2.3. Dephasing, Momentum Transfer, and Molecular Alignment.- 1.5.3. Optical Pumping.- 1.6. Optically Detected Double Resonance.- 1.6.1. Microwave-Optical Double Resonance.- 1.6.1.1. Microwave-Optical Double Resonance in Atoms.- 1.6.1.2. Microwave-Optical Double Resonance in CN.- 1.6.1.3. Microwave-Optical Double Resonance in OH and OD.- 1.6.1.4. Microwave-Optical Double Resonance in CS.- 1.6.1.5. Microwave-Optical Double Resonance in BaO.- 1.6.1.6. Microwave-Optical Double Resonance in NO2.- 1.6.1.7. Microwave-Optical Double Resonance in NH2.- 1.6.1.8. Microwave-Optical Double Resonance in BO2.- 1.6.2. Infrared-Optical Double Resonance.- 1.6.2.1. Infrared-Optical Double Resonance in NH3.- 1.6.2.2. Infrared-Optical Double Resonance in OsO4.- 1.6.2.3. Infrared-Optical Double Resonance in Biacetyl.- 1.6.2.4. Infrared-Optical Double Resonance in F8+.- 1.6.2.5. Infrared-Optical Double Resonance in Coumarin-6.- 1.6.3. Optical-Optical Double Resonance.- 1.6.3.1. Optical-Optical Double Resonance in Atoms.- 1.6.3.2. Optical-Optical Double Resonance in Diatomic Molecules.- 1.6.3.3. Optical-Optical Double Resonance in Polyatomic Molecules.- 1.6.4. Optically Detected Double Resonance in Large Molecules.- 1.7. Molecular Information from Double-Resonance Experiments.- 1.7.1. Spectroscopic Information.- 1.7.2. Energy Transfer and Interaction Potentials.- 1.7.3. Future Directions.- References.- 2 Coherent Transient Microwave Spectroscopy and Fourier Transform Methods.- 2.1. Introduction.- 2.2. Basic Theory and Experiment.- 2.3. Transient Absorption.- 2.4. Transient Emission.- 2.5. Fast Passage.- 2.6. Fourier Transform Microwave Spectroscopy.- 2.7. Molecular Interpretation of T1 and T2.- 2.8. Conclusion.- Appendix A. Solution of the Bloch Equations.- Appendix B. Two-State Relaxation Processes.- References.- 3 Coherent Transient Infrared Spectroscopy.- 3.1. Introduction.- 3.2. Density and Population Matrices.- 3.2.1. Basic Theory.- 3.2.2. Physical Interpretation and Applicability.- 3.3. Absorption and Emission of Radiation.- 3.3.1. Polarization and Reduced Wave Equations.- 3.3.2. Steady-State Absorption: An Example.- 3.4. Solutions of the Population Matrix Equations.- 3.4.1. Introduction.- 3.4.2. Optical Bloch Equations.- 3.4.3. Matrix Solution of the Optical Bloch Equations.- 3.5. Experimental Techniques.- 3.5.1. Pulsed Laser Experiments.- 3.5.2. Stark Switching.- 3.5.3. Frequency Switching.- 3.6. Optical Nutation.- 3.7. Optical Free Induction Decay.- 3.7.1. Theory

Eigenschaften

Breite: 152
Gewicht: 796 g
Höhe: 229
Länge: 33
Seiten: 530
Sprachen: Englisch
Autor: Jeffrey Steinfeld

Bewertung

Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Ich habe die Datenschutzbestimmungen zur Kenntnis genommen.

Zuletzt angesehen

eUniverse.ch - zur Startseite wechseln © 2021 Nova Online Media Retailing GmbH