Puzzle Zeitvertreib Beste 4K Filme Beste Multimedia-Lernspiele % SALE %

Thermodynamics of Energy Conversion and Transport


Thermodynamics of Energy Conversion and Transport
178.17 CHF
Versandkostenfrei

Lieferzeit: 21 Werktage

  • 10198124


Beschreibung

I Conversion of Radiative Energy.- 1 Statistical Mechanics of Solar Energy Conversion.- 1.1 Introduction.- 1.2 Information Theory and Statistical Mechanics.- 1.2.1 Relative Information.- 1.2.2 Exergy.- 1.3 Benchmark: Black-Body Radiation as a Free Photon Gas.- 1.4 Problems with the Black-Body Radiation Model.- 1.4.1 Isotropy.- 1.4.2 Energy Extraction.- 1.4.3 Distribution Function.- 1.5 Solar Energy Absorption Devices.- 1.5.1 Photochemical Solar Energy Conversion.- 1.6 Further Conversion of the Photon Energy: Losses and Efficiency.- 1.6.1 Dissipation Mechanisms.- 1.6.2 Maximum Efficiency and Statistical Mechanics Models.- 1.7 References.- 2 Thermodynamics of Solar Energy Conversion into Work.- 2.1 Introduction.- 2.2 Upper Bound Efficiencies.- 2.2.1 Simple Upper Bounds for Black-Body Radiation Conversion.- 2.2.2 Simple Upper Bound for Diluted Radiation Conversion.- 2.2.3 More Accurate Simple Upper Bound Efficiency.- 2.3 Terrestrial Applications.- 2.3.1 Converting Direct Solar Radiation.- 2.3.2 Converting Diffuse Solar Radiation.- 2.3.3 Converting Global Solar Radiation.- 2.4 Space Applications.- 2.4.1 Solar Space Power System Model.- 2.4.2 Classical Thermodynamic Model.- 2.4.3 Finite-Time Thermodynamics Model.- 2.5 Further Research and Studies.- 2.6 References.- 3 Thermodynamics of Photovoltaics.- 3.1 Introduction.- 3.2 Endoreversible Thermal Engines.- 3.3 Endoreversible Chemical Engines.- 3.4 Endoreversible Thermochemical Engines.- 3.5 Solar Cells.- 3.6 Solar Cells with Larger-than-Unity Quantum Efficiency.- 3.7 Tandem Solar Cells.- 3.8 Conclusion.- 3.9 References.- 4 Some Methods of Analyzing Solar Cell Efficiencies.- 4.1 Introduction.- 4.2 The Solar Cell Equation: Currents from Photon Fluxes.- 4.3 Efficiencies in General.- 4.4 Theoretical Efficiencies of a Simple Heterojunction.- 4.5 Special Cases of the Simple Theory.- 4.5.1 Homojunction with or without Impact Ionization.- 4.5.2 Hetero junction without Impact Ionization.- 4.6 Analysis of Heterojunction Cells Allowing for Impact Ionization.- 4.7 The Graded Gap Solar Cell.- 4.7.1 General.- 4.7.2 Photon Absorption Coefficient.- 4.7.3 Photon Emission Rates.- 4.7.4 Solar Energy Conversion.- 4.8 Thermophotovoltaic Conversion.- 4.8.1 Definitions.- 4.8.2 Theory of TPV Conversion.- 4.9 Recent Results.- 4.10 Conclusions.- 4.11 References.- 5 Solar buildings.- 5.1 Finalistic Systems. Introduction.- 5.2 The Geophysical Inputs.- 5.2.1 The Incoming Solar Flux.- 5.2.2 The Equation for TEdry.- 5.2.3 The Equation for TEwet.- 5.3 The Model of the Solar House.- 5.3.1 General Remarks on the Model with Fixed Controls.- 5.3.2 The Annual Control.- 5.4 Backup and Adaptive Controls.- 5.5 References.- II Conversion of Thermal and Chemical Energy.- 6 Discrete Hamiltonian Analysis of Endoreversible Thermal Cascades.- 6.1 Introduction: Multistage Novikov-Curzon-Ahlborn Process.- 6.2 A Single Stage with the Driving Heat Flux as a Control Variable.- 6.3 Applying Single-Stage Formulas to a Multistage Process.- 6.4 Pontryagin's Structure of Optimal Control.- 6.5 Work Maximizing in NCA Cascades by Discrete Maximum Principle.- 6.6 The Hamiltonian as the Lagrange Multiplier of a Time Constraint.- 6.7 Limiting Continuous Process.- 6.8 Concluding Remarks.- 6.9 References.- 7 Optimal Piston Paths for Diesel Engines.- 7.1 Introduction.- 7.2 Model.- 7.2.1 Combustion.- 7.2.2 Frictional Losses.- 7.2.3 Conductive and Convective Heat Leak.- 7.2.4 Radiative Heat Leak.- 7.3 Optimization.- 7.3.1 Control Theory.- 7.3.2 Stochastic Optimization.- 7.4 Results.- 7.4.1 Optimal Path.- 7.4.2 Optimal Time of Ignition.- 7.5 Conclusion.- 7.6 References.- 8 Qualitative Properties of Conductive Heat Transfer.- 8.1 Theoretical Background.- 8.1.1 Fourier's Differential Equation.- 8.1.2 Balance of Internal Energy.- 8.1.3 Material (Constitutive) Equations.- 8.1.4 Transport Equation. Initial and Boundary Conditions.- 8.1.5 Heat Conduction in Irreversible Thermodynamics.- 8.1.6 Variational Principles.- 8.1.7 Stationary Case.- 8.1.8 Temp

Eigenschaften

Breite: 161
Gewicht: 684 g
Höhe: 26
Länge: 242
Seiten: 335
Sprachen: Englisch
Autor: Alexis De Vos, Stanislaw Sieniutycz

Bewertung

Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Ich habe die Datenschutzbestimmungen zur Kenntnis genommen.

Zuletzt angesehen

eUniverse.ch - zur Startseite wechseln © 2021 Nova Online Media Retailing GmbH