Puzzle Zeitvertreib Beste 4K Filme Beste Multimedia-Lernspiele % SALE %

Functional Metamaterials and Metadevices


Functional Metamaterials and Metadevices
157.15 CHF
Versandkostenfrei

Lieferzeit: 7-14 Werktage

  • 10461198


Beschreibung

Preface

1 Concepts from metamaterials to metadevices

1.1 Rationale for metamaterials exploration

1.2 Classification of metamaterials

1.3 Evolution of metamaterials

1.4 Emerging functional metadevices

1.4.1 Reconfigurable and tunable metadevices

1.4.2 Electro-optical metadevices

1.4.3 Liquid-crystal metadevices

1.4.4 Phase-change metadevices

1.4.5 Superconducting metadevices

1.4.6 Ultrafast photonic metadevices

1.4.7 Nonlinear metadevices with varactors

1.4.8 Metadevices driven by electromagnetic forces

1.4.9 Acoustic metadevices

2 Design and fabrication of metamaterials and metadevices 

2.1 Common design Approaches for metamaterials

2.1.1 Resonant approach

2.1.2 Transmission line Approach

2.1.3 Hybrid Approach

2.2 General tuning methods for metadevices

2.3 Fabrication technology

2.3.1 Photolithography<

2.3.2 Shadow mask lithography

2.3.3 Soft lithography

2.3.4 Electron beam lithography

2.3.5 3D metamaterial fabrication techniques

2.4 Tuning techniques

2.4.1 Mechanical tuning

2.4.2 Electromechanical displacements

2.4.3 Lattice displacement

2.4.4 Thermal stimulation

2.4.5 Material tuning     

3 Electromagnetic metamaterials and metadevices

3.1 Fundamental theory of electromagnetic metamaterials

3.2 Single negative metamaterials

3.2.1 Metamaterials with negative effective permittivity in the microwave regime

3.2.2 Metamaterials with negative effective permeability in the microwave regime

3.3 Double Negative Metamaterials

3.4 Zero index metamaterials

3.5 Electromagnetic band gap metamaterials

3.5.1 Types of EBG structures

3.5.2 Numerical modeling of EBG

3.5.3 EBG applications

3.6 Bi-isotropic and bi-anisotropic metamaterials

3.7 Microwave metamaterial-inspired metadevices

4 Terahertz metamaterials and metadevices

4.1 Introduction

4.2 Passive-type terahertz metamaterials

4.2.1 Terahertz metamaterials with electric responses

4.2.2 Terahertz metamaterials with magnetic responses

4.2.3 Terahertz metamaterials with negative refractive indices

4.2.4 Broadband terahertz metamaterials

4.3 Active-type terahertz metamaterials

4.3.1 Electrically tunable THz metamaterials

4.3.2 Optically tunable THz metamaterials

4.3.3 Mechanically tunable THz metamaterials

4.4 Flexible THz metamaterial sensors

5 Photonic metamaterials and metadevices

5.1 Introduction

5.2 Photonic crystals

5.2.1 A historical account

5.2.2 Construction of photonic crystals

5.2.3 Applications of photonic crystals

5.3 Metamaterials designed through transformation optics

5.3.1 Metamaterials mimicking celestial mechanics

5.3.2 Metamaterials gradient index lensing

5.3.3 Battlefield applications

5.4 Hyperbolic metamaterials

5.4.1 Hyperbolic media in retrospect

5.4.2 Design and building materials

5.4.3 Photonic hypercrystals

5.4.4 Applications of hyperbolic metamaterials

5.4.4.1 High-resolution imaging and lithography

5.4.4.2 Spontaneous emission engineering

5.4.4.3 Thermal emission engineering

6 Chiral metamaterials and metadevices

6.1 Historical perspective

6.2 Chirality parameter and ellipticity

6.3 Typical chiral metamaterials

6.3.1 Chiral metamaterials with negative refractive index

6.3.2 3D chiral metamaterials

6.3.3 Self-assembled chiral metamaterials

6.3.4 Gyroid metamaterials

6.3.5 Nonlinear chiral metamaterials

6.4 Chiroptical effects

6.4.1. Extrinsic chirality

6.4.2 Superchiral fields

6.5 Typical applications of chiral metamaterials

6.5.1 Chiral metamaterial sensors

6.5.2 Nonlinear optics in chiral metamaterials

6.5.3 Chiral light-matter interactions

6.5.4 Active chiral metamaterials

7 Plasmonic metamaterials and metasurfaces

7.1 Plasmonic meta-atoms and their interactions

7.2 Plasmonic metamaterials implementing negative refraction and negative refractive index

7.3 Plasmonic metasurfaces

7.4 Graphene-based plasmonic metamaterials

7.5 Self-assembled plasmonic metamaterials

7.6 Application perspective

7.6.1 Optical nanocircuits and nanoantennas

7.6.1.1 Optical nanocircuits

7.6.1.2 Optical nanoantennas

7.6.2 Functional metasurfaces

7.6.3 Plasmonic metamaterials for sensing

8 Metamaterials-inspired frequency selective surfaces

8.1 Evolution of frequency selective surfaces

8.2 Design of metamaterial-based miniaturized-element frequency-selective surfaces

8.3 Printed flexible and reconfigurable frequency selective surfaces

8.4 Metamaterials inspired FSS antennas and circuits

8.4.1 Ultra-wideband antennas and microstrip filters

8.4.2 Microstrip antennas with HIS ground plane

8.4.3 Fabry-Pérot antenna

8.5 Metamaterial-inspired microfluidic sensors

8.6 Metamaterial-inspired rotation and displacement sensors

9 Nonlinear metamaterials and metadevices

9.1 Introduction

9.2 Implementation approaches to manufacture nonlinear metamaterials

9.2.1 Insertion of nonlinear elements

9.2.2 Nonlinear host medium

9.2.3 Local field enhancement

9.2.4 Nonlinear transmission lines

9.2.5 Intrinsic structural nonlinearity

9.2.6 Nonlinear metamaterials with quantum and superconducting elements

9.3 Nonlinear responses and effects

9.3.1 Nonlinear self-action

9.3.2 Frequency conversion and parametric amplification

9.3.2.1 Harmonic generation

9.3.2.2 Parametric amplification and loss compensation

10 Acoustic metamaterials and metadevices

10.1 Historical perspective and basic principles

10.2 Dynamic negative density and compressibility

10.3 Membrane-type acoustic materials

10.4 Transformation acoustics and metadevices with spatially varying index

10.5 Space-coiling and acoustic metasurfaces

10.6 Acoustic absorption

10.7 Active acoustic metamaterials

10.8 Emerging directions and future trends

10.8.1 Nonlinear acoustic metamaterials

10.8.2 Nonreciprocal acoustic devices

10.8.3 Elastic and mechanical metamaterials

10.8.4 Graphene-inspired acoustic metamaterials

10.8.5 Acoustic metamaterials with characteristics describable by non-Hermitian Hamiltonians

10.8.6 Future trends

11 Mechanical metamaterials and metadevices

11.1 Introduction

11.2 Auxetic mechanical metamaterials

11.2.1 Re-entrant structures

11.2.1.1 Auxetic foam

11.2.1.2 Auxetic honeycomb

11.2.1.3 Three-dimensional re-entrant structures

11.2.1.4 Auxetic microporous polymers

11.2.2 Auxetic chiral structures

11.2.3 Rotating rigid and semi-rigid auxetic structures

11.2.4 Dilational metamaterials

11.2.5 Potential applications of auxetic metamaterials

11.3 Penta-mode metamaterials

11.4 Ultra-property metamaterials

11.5 Negative-parameter metamaterials

11.6 Mechanical metamaterials with tunable negative thermal expansion

11.7 Active, adaptive, and programmable metamaterials

11.8 Origami-based metamaterials

11.9 Mechanical metamaterials as seismic shields

11.10 Future trends

12 Perspective and future trends

12.1 Emerging metamaterials capabilities and new concepts

12.1.1 Virtual photon interactions mediated by metamaterials

12.1.2 Routes to aperiodic and correlation metamaterials

12.1.3 Mathematical operations and processing with structured metamaterials

12.1.4 Topological effects in metamaterials

12.2 Manipulation of metasurface properties

12.2.1 Functionally doped metal oxides for future ultrafast active metamaterials

12.2.2 Optical dielectric metamaterials and metasurfaces

12.2.3 Beam shaping with metasurfaces

12.2.4 Control of emission and absorption with metamaterials

12.2.5 Control of far-field thermal emission properties through the use of photonic structures

12.3 Research trends of nonlinear, active and tunable properties

12.3.1 Engineering mid-infrared and optical nonlinearities with metamaterials

12.3.2 Directional control of nonlinear scattering from metasurfaces

12.3.3 Coherent control in planar photonic metamaterials

12.3.4 Nanomechanical photonic metamaterials

12.4 Emerging metadevices and applications

12.4.1 RF beam steering module with metamaterials electronically scanned array

12.4.2 Smart metamaterial antennas

12.4.3 Energy harvesting enhanced with metamaterials

12.4.3.1 Electromagnetic energy harvesting

12.4.3.2 Photonic crystals-based vibroacoustic energy harvesting

12.4.3.3Acoustic metamaterial-based vibroacoustic energy harvesting

12.4.4 Focus magnetic stimulation

12.4.5 Thermophotovoltaics

12.4.6 Transparent thermal barrier

12.4.7 Passive radiative cooling

12.5 Prospective manufacturing and assembly technologies of metamaterials and metadevices

12.5.1 Nanoparticles for complex multimaterial nanostructures

12.5.2 Eutectics as metamaterials

12.5.3 Large area roll-to-roll processing

Eigenschaften

Breite: 158
Gewicht: 600 g
Höhe: 242
Länge: 22
Seiten: 277
Sprachen: Englisch
Autor: Xingcun C. Tong

Bewertung

Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Ich habe die Datenschutzbestimmungen zur Kenntnis genommen.

Zuletzt angesehen

eUniverse.ch - zur Startseite wechseln © 2021 Nova Online Media Retailing GmbH