Puzzle Zeitvertreib Beste 4K Filme Beste Multimedia-Lernspiele % SALE %

Handbook of Materials Characterization


Handbook of Materials Characterization
178.17 CHF
Versandkostenfrei

Lieferzeit: 7-14 Werktage

  • 10474403


Beschreibung

Chapter 1: X-Ray diffraction from polycrystalline materials: techniques and applications

1. Introduction

2. Basic properties and background of X-rays

3. Principles of crystals symmetry

    3.1. Crystal Types

            3.1.1 Ideal Crystal

            3.1.2 Real Crystal 

4. Elements of X-ray diffraction

    4.1. Interaction of electromagnetic waves and atoms

    4.2. Concept of Reciprocal Space

    4.3. Diffraction from Periodic Structures

    4.4. Bragg´s law

    4.5. Laue´s Equation & Ewald sphere

    4.6. Structure factor

    4.7. Diffraction by crystalline aggregates

5. Instrumentation

     5.1. Various components

     5.2. Characterization by XRD

     5.3. Types of Scan

     5.4 Sample loading and unloading

     5.5 Software for XRD patterns analysis

6. Analysis of XRD data

7. Basics Concepts of Rietveld Method

8. Crystals Size and strain calculations

9. Phases quantifying

10. Summary

11. References

 

Chapter 2: TEM for atomic scale studies: fundamentals, instrumentation and applications in nanotechnology

1. Introduction

     1.1. TEM Overview

     1.2. TEM-What can we do?

     1.3. Historical development of modern TEM

2. Basic Background and Principle

     2.1. Light versus Electron Microscope

     2.2. Resolution and its limitations

     2.3. Electron Properties

2.4. Advancement in Electron Microscopy

2.5. Imaging and micro-analysis

2.6. High Resolution Imaging

3. Instrumentation

     3.1. Basic layout & components

            3.1.1. Electron Source

            3.1.2.  Electromagnetic lenses

            3.1.3. Vacuum System

            3.1.4. Electron Detectors

            3.1.5. Other Components (Apertures)

            3.1.6. TEM cross-sectional  Model

     3.2. Functioning and operational Procedures

     3.3. Sample Preparation

            3.3.1. Basic criterion for successful TEM sample preparation

            3.3.2. Preparation method

                       3.3.2.1. Nanoparticles

                       3.3.2.2. Bulk

                       3.3.2.3. Layered structures

                  3.3.2.4. Thin Films

            3.3.3. Artifacts Elimination

4. Imaging and Spectroscopy: a brief overview

     4.1. High resolution TEM imaging

     4.2. Electron diffraction

            4.2.1. Low Energy Electron Diffraction (LEED)

            4.2.2. Reflection High Energy Electron Diffraction (RHEED)

     4.3. Chemical Mapping

     4.4. Electron energy loss spectroscopy

5. Data Processing and software

6. Future prospects

5. Acknowledgment

6. References

 

Chapter 3: Importance of scanning electron microscopy in the morphological characterization of nanomaterials

1. Introduction

     1.1. Scanning Electron Microscopy

     1.2. Importance of Scanning Electron Microscopy

     1.3. Basic Principle

     1.4. Advancement in Scanning Electron Microscopy

1.5. Imaging and micro-analysis

1.6. Electron Diffraction Analysis

2. Instrumentation

     2.1. Basic layout

     2.2. Functioning and operation

2.3. Sample Preparation & staining

2.4. Artifacts Elimination

3. Application of scanning electron microscopy in materials science

     3.1. Nanomaterials

            3.1.1. Nanowires

            3.1.2. Quantum Dots 4. Summary

5. Acknowledgment

6. References

 

Chapter 4: Scanning force microscopy: basic concept, instrumentation and applications

1. Introduction to Scanning Force Microscopy

     1.1. Atomic Force Microscopy

            1.1.1. History and background of AFM

            1.1.2. Basic component of an AFM

                       1.1.2.1. General components and their functions

            1.1.3. Tip-Sample interactions and feedback mechanism

            1.1.4. Atomic force and different scanning modes

            1.1.5. AFM tip and resolution

     1.2. Two special modes of AFM

            1.2.1. Magnetic Force Microscopy

                      1.2.1.1. Dual Scanning

                      1.2.1.2. Advantages of MFM imaging

            1.2.2. Electrostatic Force Microscopy

2. Experimental Details

     2.1. Thin film deposition of Co on Si

     2.2. Characterization performed

3. Results and Discussion

     3.1. Data analysis

     3.2. Application in nano and hybrids composites

4. Summary

5. References

 

Chapter 5: Characterization of nanomaterials using dynamic light scattering: basic concept and applications

1. Introduction                        

2. Basic concept of light scattering

     2.1. Interaction of light with Matter

     2.2. Total intensity light scattering

3. Dynamic Light Scattering

     3.1. Characterization using dynamic light scattering

             3.3.1. Particle size

             3.3.2. Particle Electrostatics

             3.3.3. Zeta potential

     3.2. Theory

4. Experimental

     4.1. Instrumentation

     4.2. Data analysis methods for DLS measurements

5. Future prospects

6. Acknowledgment

7. References

Eigenschaften

Bewertung

Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Ich habe die Datenschutzbestimmungen zur Kenntnis genommen.

Zuletzt angesehen

eUniverse.ch - zur Startseite wechseln © 2021 Nova Online Media Retailing GmbH